Ultra-low noise and low-temperature readout electronics *f*<1GHz based on cryoHEMTs made at C2N (formerly LPN): performance and applications

Y. Jin, Q. Dong, L. Couraud, A. Cavanna, U. Gennser, C. Ulysse, E. Cambril

C2N, CNRS, Univ. Paris-sud, Univ. Paris-Saclay, Marcoussis, France moving to:

C2N, CNRS, Univ. Paris-sud, Univ. Paris-Saclay, Palaiseau, France

Outline

- Introduction Motivation Low temperature and low noise vs FETs From HEMT to cryoHEMT
- Performance Noise voltage: sub-nV/ \sqrt{Hz} Noise current: aA/\sqrt{Hz}
- Applications
- Conclusions and further developments

Why low-temperature electronics and the challenge 1/2

- For most ultra-sensitive detectors: low-temperature \rightarrow low thermal noise
- $(4kTR)^{\frac{1}{2}} \rightarrow 50M\Omega$: at $300K \Leftrightarrow 910nV/Hz^{\frac{1}{2}}$; at $30mK \Leftrightarrow 9.1nV/Hz^{\frac{1}{2}}$

High impedance Ge detector at 20 mK

due to the long cable:

- High capacitance \rightarrow slow down the data acquisition rate
- Microphonic noise
- Triboelectricity
- degrade the intrinsic detectors' performance
- Capacitive coupling _
- High performance electronics for high-impedance cryogenic readout electronics Low temperature, low power and low-frequency noise

Why low-temperature electronics and the challenge 2/2

Present Low Noise Electronics & Operating Conditions

	Low Frequency		High Frequency	
	Low	High	Low	
	Impedance	Impedance	Impedance	
Room	HEMTs	JFETs	HEMTs	commercially available
Temperature	BJTs			devices

➡ The challenge is to fill the above gap:

High performance electronics for high-impedance cryogenic readout electronics Low temperature, low power and low-frequency noise

Low temperature (LT) and low-frequency (LF) noise vs FETs

From HEMT to cryoHEMT

During a long period:

the input noise voltage > 1 nV/ \sqrt{Hz} @ 1kHz and 4.2 K

From HEMT to cryoHEMT

More than 10 years collective efforts for optimizing:

Heterostructures by Molecular Beam Epitaxy:

A. Cavanna; U. Gennser several tens of heterostructures tested

Ohmic and Schottky contacts:

L. Couraud, L. Leroy, A. Durnez, C. Ulysse

EBL (Electron Beam Lithography) and IBE (Ion Beam Etching):

E. Cambril, S. Guilet several thousands of HEMTs with 4 to 6 steps of EBL

Characterization and simulation:

Q. Dong (PhD & Postdoc since 2009), YX. Liang (Postdoc 2007-2012), E. Grémion (PhD 2005-2008), M.C. Cheng, Clarkson Univ. NY (visiting scientist 2007) several hundreds transistors measured from 300 K to 4.2 K

From HEMT to cryoHEMT

The breakthrough was achieved in 2012 and since then: the input noise voltage can be « $1 \text{ nV}/\sqrt{Hz}$ @ 1kHz and 4.2 K

Outline

- Introduction Motivation Low temperature and low noise vs FETs From HEMT to cryoHEMT
- Performance Noise voltage: sub-nV/ \sqrt{Hz} Noise current: aA/\sqrt{Hz}
- Applications
- Conclusions and further developments

Characterization: Noise voltage & noise current

Characterization: Noise voltage & noise current

Characterization: Noise voltage & noise current

Characterization: noise current measurement

With two different C_{input} 10⁻⁷ at 4.2 K I_{ds} = 1 mA, 10⁻⁸ V_{ds} = 100 mV e_{ni_1pF} **6**¹⁰⁻⁹ (√Hz¹⁄₂) e_{ni_5pF} 10⁻⁹ 10⁻¹¹ 10⁰ 10³ 10⁵ 10² 10⁶ 10¹ 10⁴ frequency (Hz)

 $e_{ni_{1}} = i_{n} \left(\frac{1}{2\pi f(C_{input_{1}} + C_{HEMT})} \right)$ $e_{ni_{2}} = i_{n} \left(\frac{1}{2\pi f(C_{input_{2}} + C_{HEMT})} \right)$

 $C_{HEMT} \approx 6.8 \, pF$

The deduced noise current

Comparison of capacitor and resistor input

Characterization: gate leakage current measurement

Using a follower configuration, the gate leakage current can be deduced by measuring the variation of the source voltage

For the working point $V_{ds} = 100 \text{ mV}, I_{ds} = 1 \text{ mA}$ $V_{gs} = -90 \text{ mV}$ Using C_{input} setup, e.g., $C_{input} = 5 \text{ pF}$ $\delta V_{Cinput} = \delta V_S = 0.5 \text{ mV}$ $\delta t = 480 \text{ s}$ $I_{gs} = \delta V_{Cinput} C_{input} / \delta t \approx 5.2 \text{ aA!}$ Input impedance $V_{gs} / I_{gs} \approx 17 \text{ P}\Omega!$

Appl. Phys. Lett. 105, 013504 (2014)

Understanding (1/3): noise voltage spectrum compositions

Noise voltage spectrum = 1/f noise + white noise

Understanding (2/3): input 1/f noise voltage

Input noise voltage e_n vs. gate capacitance C_{as}

50Ω input: $R_{input} = R_{in} = 50 \Omega$, $R_L = 300 \Omega$

fundamental of the 1/f noise voltage in field-effect devices: standard deviation of the average value <*N*> in an open system *N* (grand canonical ensemble) - central limit theorems

Understanding (3/3): input white noise voltage

Reduced thermal shot noise

$$e_{n-white}^2 \approx \frac{F2eI_{ds}^2}{g_m^2}$$

F: Fano factor which depends on the gate length

APL 105, 013504 (2014)

Performance: Input noises *vs.* gate capacitance C_{gs}

Noise voltage e_n , Total noise voltage e_{nt} , Noise current i_n (at 4.2 K)

$L_{\rm g} \mathbf{x} W(\mu \mathrm{m}^2)$		1.5×10 ⁵	6.4×10^4	2.0×10^{4}	2.0×10 ³	4.0×10^{2}
$C_{gs}(pF); C_{gd}(pF)$		236; 8.9	103; 8.9	33; 3.5	4.6; 1.0	1.8; ~0.6
$V_{ds}(mV); I_{ds}(mA)$		100; 1.0	100; 1.0	100; 1.0	100; 1.0	100; 0.5
$g_{\rm m}({\rm mS}); g_{\rm d}({\rm mS})$		52; 0.4	40; 1.2	115; 1.3	44; 1.3	15; 0.8
$ft = g_m/(2\pi C_{gs})$ (Hz)		3.5×10^{7}	6.2×10^{7}	5.5×10 ⁸	1.5×10 ⁹	1.3×10 ⁹
$e_{\rm n} \left({\rm nV/Hz}^{\frac{1}{2}} \right)$	@1Hz @10Hz @100Hz @1kHz	5.4 17 1nV/Hz [%] @30Hz 0.52 0.24	6.3 2.1 0.76 0.34	14 4.5 1.5 0.57	30 12 4.5 1.4	100 30 10 2.7
$e_{\text{n-white}} (\text{nV/Hz}^{1/2})$		0.18	0.22	0.12	0.21	0.4
i_{n} (aA/Hz ^{1/2})	@1Hz @1kHz	21 6.8×10 ²	$15 5.1 \times 10^2$	9.1 2.4×10 ²	2.2 70	3.6 57
R_n (Ω)	@1Hz @1kHz	2.6×10^8 3.5×10^5	4.2×10^{8} 6.3×10^{5}	1.5×10^9 2.2×10^6	1.4×10^{10} 2.0×10^{7}	2.8×10^{10} 3.7×10^{7}
T _{nt} (mK)	@1Hz @1kHz	4.1 5.9	3.4 6.2	4.6 5.0	2.4 3.6	13 5.6

18/27

Invited talk at WOLTE13, Sorrento, 2018

Outline

- Introduction Motivation Low temperature and low noise vs FETs From HEMT to cryoHEMT
- Performance Noise voltage: sub-nV/ \sqrt{Hz} Noise current: aA/\sqrt{Hz}
- Applications
- Conclusions and further developments

Applications: Mesoscopic Physics - I

First cryo-preamplifier by F. Pierre, A. Anthore et al at C2N (formerly LPN)

Applications: Mesoscopic Physics - II Based on the work by F. Pierre, A. Anthore *et al* @ LPN G. Fève *et al* at LPA, ENS Paris

Comparisons: NF LI-75A and cryoHEMT (from V. Freulon thesis at LPA, ENS Paris)

Signal-to-noise ratio SNR: $SNR = \frac{\int_{f_{min}}^{f_{max}} du S_{\nu}^{p}(u)}{\left[\int_{f_{min}}^{f_{max}} du (S_{\nu}^{a})^{2}/2\right]^{\frac{1}{2}}} \sqrt{T_{meas}}$

PSD of the measured voltage: S_v^p ; PSD of the amp input noise voltage e_n : $S_v^a = e_n^2$ and measurement duration $T_{\text{meas}} \Rightarrow$ For a fixed SNR: $T_{\text{meas}} \sim e_n^4$

T (ns) By cryoHEMT preamplifier at ≤ 4.2 K, for one point: 2.25×10^2 s ≈ 4 minutes! SNR = 30!

By NF LI-75A at 300 K, for one point: 2.56×10^4 s \approx 7 hours! SNR = 10!

Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization, Nature Commun. 6, 20 (2015)

Comparisons: NF LI-75A at 300 K and cryoHEMT amplifier at 4.2 K

	According to NF Corporation	4.6 pF cryoHEMT Made at CNRS/LPN	
Operating temperature	300 K	0 K to 77 K	
	NF LI-75A Data obtained @ 300 K	CryoHEMT amplifier Data obtained @ 4.2 K Power consumption: 0.25mW	
Input impedance	100 MΩ // 50 pF Voltage gain of 100	10 PΩ* // 15 pF Voltage gain of about 10	
Noise voltages	2 nV/Hz ^{1/2} at 1 kH	1.42 nV/Hz ^{1/2} at 1 kHz 0.3 nV/Hz ^{1/2} at 100 kHz 0.24 nV/Hz ^{1/2} at 1 MHz	
Noise currents	$14 fA/Hz^{1/2} *$	60 aA/Hz ^{1/2} at 1 kHz 0.7 fA/Hz ^{1/2} at 100 kHz 2 fA/Hz ^{1/2} at 1 MHz	

*Eur. Phys. J. Special Topics 172, 163 (2009)

*cryoHEMT input impedance > 10 P Ω : 10¹⁶ Ω

Applications: Astrophysics CDMS

B. Sadoulet team at UC Berkeley

- Comparison of the input noise voltage between cryoHEMT and JFETs

(by the C2N)

- Comparison of the heat dissipation and the sensibility threshold

	Temperature	Heat dissipation	Sensibility threshold
JFET	150 K	5.5 mW	133 electrons
CryoHEMT	4.2 K	0.1 mW	35 electrons

An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors, J. Low Temp. Phys. 184, 505 (2016) A HEMT-Based Cryogenic Charge Amplifier with sub-100 eVee Ionization Resolution for Massive Semiconductor Dark Matter Detectors http://arxiv.org/abs/1611.09712 (2018)

Applications of cryoHEMTs and Publications in

- Mesoscopic Physics: C2N, Palaiseau; LPA ENS Paris; IN, Grenoble

1 Science; 1 Nature Physics; 2 Nature Commu.

- Low Temperature STM: LPS, Orsay; Leiden Univ.

Charge trapping and super-Poissonian noise centers in a cuprate superconductor **Nature Physics** (accepted) (2018)

Atomic scale shot-noise using cryogenic MHz circuitry

Review of Scientific Instruments (accepted) (2018)

- Low Temperature Nano-mechanical Resonators: ICFO, Barcelona

Ultrasensitive displacement noise measurement of carbon nanotube mechanical resonators **Applied Physics Letters** 113, 063104 (2018) Improving the read-out of the resonance frequency of nanotube mechanical resonators **Nano Letters** 18, 5224 (2018)

Nano Letters 18, 5324 (2018)

- Low Temperature Detectors: IRFU, CEA-Saclay

Toward large μ-calorimeters x-ray matrices based on metal-insulator sensors and HEMTs/SiGe cryo-electronics **Proc. SPIE 2016**, vol.9905, 99050S (2016) (for X-ray detection) High impedance TES with classical (cryogenic HEMTs) readout electronics: a new scheme toward large x-ray matrices **Proc. SPIE 10699**, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 106995T (2018)

- Superconductor Circuits: LPS, Orsay; Collège-de-France, Paris

- Cryogenic Dark Matter Detection: Edelweiss III: IPNL, Lyon; Super-CDMS: SLAC-Stanford, Berkeley; Tsinghua Univ. Beijing

- CryoHEMTs Based Amplifiers by « Stahl Electronics »

Outline

- Introduction Motivation Low temperature and low noise vs FETs From HEMT to cryoHEMT
- Performance Noise voltage: sub-nV/ \sqrt{Hz} Noise current: aA/\sqrt{Hz}
- Applications
- Conclusions and further developments

Conclusions

High impedance and low frequency cryoelectronics

	Low Frequency		High Frequency	
	Low Impedance	High Impedance	Low Impedance	
Room Temperature	JFETs BJTs	JFETs	HEMTs	Commercially available devices
Low Temperature (T < 100 K)	HEMTs f ≥ MHz CryoHEMTs	CryoHEMTs	HEMTs f > 1GHz CryoHEMTs Tested up to 150MHz	Commercially available devices Made at CNRS/C2N Formerly: CNRS/LPN

Our cryoHEMTs facilitate the following accomplishments:

- Reaching unprecedented low noise current and decrease significantly noise voltage
- Attaining unrivaled readout rates and improve the Signal-to-Noise Ratio
- Realizing novel experimental observations

Their implementation has already resulted in the publications of

1 Science, 2 Nature Phys., 2 Nature commu. 1 Nano Lett.

10 Lett. 26/27 Invited talk at WOLTE13, Sorrento, 2018

Further Developments: LT and LF amplifier

- Follower + Amplifier: low input capacitance and low noise voltage at LF

Using two C_{gs} = 236pF cryoHEMTs: C_{input} = 10pF and R_{input} > 10¹⁵ Ω e_n = 1nV/Hz @60Hz

27/27 Invited talk at WOLTE13, Sorrento, 2018