Contacts:  Yong JIN

We develop specific process for various field-effect devices including a new generation of ultra-low noise cryoHEMTs for low frequency high impedance deep cryogenic readout electronics, nano-Schottky diodes for sub-THz and THz space electronics, as well as quantum coherent mesoscopic circuits.

Low-temperature readout electronics is essential to suppress various unwanted effects due to the long cable between the measured signal at low temperature and the room-temperature readout electronics: the triboelectric effect, microphonic noise, capacitive coupling noise and data-acquisition rate slow-down. Based on a long-term investigation of material growth and device process, the cryoHEMTs (Cryogenic High Electrons Mobility Transistors) made at the C2N (formerly LPN) are now in the process to fill the gap of the FET (Filed-Effet Transistor) for high impedance, low-power and low-frequency deep cryogenic readout electronics. Different input capacitance cryoHEMTs have been fabricated and characterized, and ultra-low noise voltage and, in particular, unprecedented low noise current have been obtained. Two examples:

  • with a gate capacitance of 100 pF at 4.2 K, the noise voltage can decrease from 6 nV/Hz½ at 1 Hz to 0.32 nV/Hz½ at 1 kHz; the noise current varies from 20 aA/Hz½ at 1 Hz to 0.5 fA/Hz½ at 1 kHz. This transistor has been tested in making a cryogenic readout circuit at UC Berkeley for a dark matter search experiment; the detection threshold of 133 electrons by conventional readout electronics can be expected to be reduced to only 35 electrons! We are involved in the collaborative experiments: EDELWEISS-III collaboration  and SuperCDMS.
  • with a gate capacitance of 3.5 pF show at 4.2 K and 1 Hz a noise voltage of 30 nV/Hz½ and a current noise of only 2.2 aA/Hz½; a noise voltage of about 0.2 nV/Hz½ and a noise current of about 2 fA/Hz½ at 1 MHz. These cryoHEMTs are widely used to build cryogenic preamplifiers for new observations in mesoscopic physics, as well as in low-temperature Scanning Tunneling Microscope. The lowest noise current accuracy of ±9x10-32 A2/Hz at 1 MHz is obtained.

Figure 1: Comparison of noise performance between cryoHEMTs with a gate-source capacitance of of 100 pF at 4.2 K made at C2N and the benchmark transistors - Silicon JFETs at 300 K from InterFET. N.B. JFET cannot work at deep cryogenic temperature due to the charge freeze-out.

Figure 2: Comparison of the commercial low-noise amplifier NF LI-75A and the cryoHEMTs based low temperature amplifier, where T is the operating environment temperature; Z, the input impedance, (1 PΩ = 1×1015 Ω); Av, the voltage gain; en, the input noise voltage; in, the input noise current. The used cryoHEMTs is with a gate-source capacitance of 3.5 pF.

Publications involving cryoHEMTs
Our cryoHEMTs at 4.2 K or lower Facilitate the following accomplishments:
-    Reaching unprecedented low noise current of aA/Hz½ and low noise voltage of sub-nV/Hz½;
-    Attaining unrivaled readout rates and improve the Signal-to-Noise Ratio;
-    Realizing novel experimental observations.
Their implementation has already resulted in the publications of 
3 Science, 3 Nature Phys., 5 Nature Comms., 1 Nano Lett.

CryoHEMTs used for Mesoscopic Physics:

Fractional statistics in anyon collisions
H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin, G. Fève
Science 368, 6487, 173 (2020)

Quantum tomography of electrical currents
R. Bisognin, A. Marguerite, B. Roussel, M. Kumar, C. Cabart, C. Chapdelaine, A. Mohammad-Djafari, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, U. Gennser, Y. Jin, P. Degiovanni & G. Fève

Nature Communications 10, 3379 (2019)

Microwave photons emitted by fractionally charged quasiparticles
R. Bisognin, H. Bartolomei, M. Kumar, I. Safi, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, U. Gennser, Y. Jin & G. FèveNature Communications 10, 1708 (2019)

Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures
Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li
Acta Physica Sinica, 68 (7) 070702 (2019)

Heat Coulomb blockade of one ballistic channel
Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.
Nature Physics 14(2), 145-148 (2018)

Two-particle interferometry in quantum Hall edge channels
Marguerite, A.; Bocquillon, E.; Berroir, J.-M.; Plaçais, B.; Cavanna, A.; Jin, Y.; Degiovanni, P.; Fève, G
Physica Status Solidi (B). 254, 3, pn/a-n/a. 13p. (2017)

Decoherence and relaxation of a single electron in a one-dimensional conductor
Marguerite, A.; Cabart, C.; Wahl, C.; Roussel, B.; Freulon, V.; Ferraro, D.; Grenier, Ch.; Berroir, J.-M.; Plaçais, B.; Jonckheere, T.; Rech, J.; Martin, T.; Degiovanni, P.; Cavanna, A.; Jin, Y.; Fève, G.
Physical Review B. 94, 115311 (2016)

Primary thermometry triad at 6 mK in mesoscopic circuits
Iftikhar, Z.; Anthore, A.; Jezouin, S.; Parmentier, F. D.; Jin, Y.; Cavanna, A.; Ouerghi, A.; Gennser, U.; Pierre, F.
Nature Communications 7, 12908 (2016) (The lowest noise current accuracy of ±9x10-32 A2/Hz at 1 MHz)

Hong-Ou-Mandel experiment for temporal investigation of single electron fractionalization
Freulon, V.; Marguerite, A.; Berroir, J. -M; Plaçais, B.; Cavanna, A.; Jin, Y.; Fève, G.
Nature Communications 6, 6854 (2015)

Quantum limit of heat flow across a single electronic channel
Jezouin, S.; Parmentier, F. D.; Anthore, A.; Gennser, U.; Cavanna, A.; Jin, Y.; Pierre, F.
Science 342, 601 (2013)

CryoHEMTs used for Dark Matter search:

Low-Noise HEMTs for Coherent Elastic Neutrino Scattering and Low-Mass Dark Matter Cryogenic Semiconductor Detectors
A. Juillard, J. Billard, D. Chaize, J-B Filippini, D. Misiak, L. Vagneron, A. Cavanna, Q. Dong, Y. Jin, C. Ulysse, A. Bounab, X. de la Broise, C. Nones & A. Phipps
J Low Temp Phys 199, 798 (2020)

A HEMT-Based Cryogenic Charge Amplifier with sub-100 eVee Ionization Resolution for Massive Semiconductor Dark Matter Detectors
A. Phipps, A. Juillard, B. Sadoulet, B. Serfass, Y. Jin
Nucl. Instrum. Methods Phys. Res., Sect. A 940, 181 (2019) - ArXiv 

An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors
Phipps, A.; Sadoulet, B.; Juillard, A.; Jin, Y.
Journal of Low Temperature Physics 184, 1/2, p505 (2016)

CryoHEMTs used for low temperature STM:

Atomic manipulation of the gap in Bi2Sr2CaCu2O8+x
F. Massee, Y. K. Huang, M. Aprili
Science 367, 6473, 68 (Supplementary Materials) (2020)

Noisy defects in the high-TC superconductor Bi2Sr2CaCu2O8+x
F. Massee, Y. K. Huang, M. S. Golden & M. Aprili
Nature Communications 10, 544 (2019)

Charge trapping and super-Poissonian noise centres in a cuprate superconductor
K. M. Bastiaans, D. Cho, T. Benschop, I. Battisti, Y. Huang, M. S. Golden, Q. Dong, Y. Jin, J. Zaanen & M. P. Allan
Nature Physics, 14, 1183 (2018)

Atomic scale shot-noise using cryogenic MHz circuitry
F. Massee, Q. Dong, A. Cavanna, Y. Jin, and M. Aprili
Review of Scientific Instruments 89, 093708 (2018)

Amplifier for scanning tunneling microscopy at MHz frequencies
K. M. Bastiaans, T. Benschop, D. Chatzopoulos, D. Cho, Q. Dong, Y. Jin, and M. P. Allan
Review of Scientific Instruments 89, 093709 (2018)

cryoHEMTs used for low temperature nano-mechanical resonators:

Cooling and self-oscillation in a nanotube electromechanical resonator
C. Urgell, W. Yang, S. L. De Bonis, C. Samanta, M. J. Esplandiu, Q. Dong, Y. Jin & A. Bachtold
Nature Physics 16, 32 (2020)

Improving the read-out of the resonance frequency of nanotube mechanical resonators
J; Schwender I. Tsioutsios, A. Tavernarakis, Q. Dong, Y. Jin, U. Staufer, and A. Bachtold
Applied Physics Letters 113, 063104 (2018)

Ultrasensitive displacement noise measurement of carbon nanotube mechanical resonators
S. de Bonis, C. Urgell, W. Yang, C. Samanta, A. Noury, J. Vergara-Cruz, Q. Dong, Y. Jin, and A. Bachtold
Nano Letters 18, 5324 (2018)

cryoHEMTs used for low temperature detectors:

High impedance TES with classical (cryogenic HEMTs) readout electronics: a new scheme toward large x-ray matrices
Galahad Jego, Xavier de la Broïse, Jean-Luc Sauvageot, Xavier Coppolani, Stefanos Marnieros, Louis Dumoulin
Proc. SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 106995T (2018)

Toward large µ-calorimeters x-ray matrices based on metal-insulator sensors and HEMTs/SiGe cryo-electronics 
Sauvageot, J.L.; Pigot, C.; de la Broïse, X.; Charvolin, T.; Sahin, H.; Rodriguez, M.; Lugiez, F.; Le Coguie, A.; Dong, Q.; Jin, Y.
Proceedings of the SPIE 2016, vol.9905, 99050S (2016) (for X-ray detection)

Cryogenic ultra-low noise HEMT amplifiers board
de la Broise, X; Bounab, A
Nuclear Instruments & Methods In Physics Research Section A 787, pp 51-54 (2015)

Cryogenic low noise and low dissipation multiplexing electronics, using HEMT plus SiGe ASICs, for the readout of high impedance sensors: New version
de la Broise, X; Lugiez, F; Bounab, A; Le Coguie, A
Nuclear Instruments & Methods In Physics Research Section A 787, pp: 64-67 (2015)

cryoHEMTs used for device physics:

First Measurement of the Intrinsic Noise of a HEMT at Sub-Kelvin Temperatures.
Torres, L.; Arcambal, C.; Delisle, C.; Dong, Q.; Jin, Y.; Rodriguez, L.; Cara, C.
Journal of Low Temperature Physics 184, 1/2, p466 (2016)

Ultra-low noise CryoHEMTs for cryogenic high-impedance readout electronics: Results and applications
Jin, Y.; Dong, Q.; Gennser, U.; Couraud, L.; Cavanna, A.; Ulysse, C.
Proceedings of 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT): 342-345 Oct, (2016)

Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics
Dong, Q; Liang, YX; Ferry, D; Cavanna, A; Gennser, U; Couraud, L; Jin, Y
Applied Physics Letters 105, 1, 013504 (2014)

Ultra-low noise HEMTs for high-impedance and low-frequency preamplifiers: realization and characterization from 4.2 K to 77 K
Dong, Q; Liang, YX; Cavanna, A; Gennser, U; Couraud, L; Ulysse, C; Jin, Y
Proceedings of IEEE 11th International Workshop On Low Temperature Electronics (WOLTE), pp21-24 (2014)

Recent presentantions:

13th international Workshop on Low Temperature Electronics (2018) - Yong Jin

Fundings: